Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytochem Anal ; 34(5): 580-593, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37226600

RESUMEN

BACKGROUND: The quality control of traditional Chinese medicine (TCM) is one of the main topics in TCM modernisation research. To date, the overwhelming majority of research has focused on chemical ingredients in the quality control of TCM. However, detecting a single or multiple chemical components cannot fully demonstrate the specificity and correlation between quality and efficacy. PURPOSE: To solve the problem that the association between quality control and efficacy is lacking. The present study was designed to establish a methodology for quality control based on quality biomarkers (Q-biomarkers) and the vasodilatation efficacy of compound DanShen dripping pills (CDDP) as a case. METHODS: Guided by the basic principles of Q-biomarkers, the compounds in TCM were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Predicted targets were screened through network pharmacology. The potential Q-biomarkers were further screened through proteomics and partial least squares regression analysis. The protein-protein interaction network that combines both predicted targets and potential Q-biomarkers was constructed to screen Q-biomarkers. RESULTS: There were 32 components and 79 predictive targets for CDDP. Proteomic results indicated that the expression of 23 differential proteins changed as pharmacodynamic and componential changes. CPSF6, RILP11, TMEM209, COQ7, VPS18, PPPP1CA, NF2, and ARFRP1 highly correlated with vasodilation. Protein interaction network analysis showed that NF2 and PPPP1CA were closely related to predicted proteins. Thus, NF2 and PPPP1CA could be considered as Q-biomarkers of CDDP. CONCLUSION: Our preliminary study suggested the feasibility of the Q-biomarkers theory in the quality of TCM. The concept of Q-biomarkers provided a powerful method to strengthen the link between clinical efficacy and the quality of TCM. In conclusion, a novel, more scientific, and standard quality control method was established in this study.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicina Tradicional China/métodos , Proteómica , Medicamentos Herbarios Chinos/química , Biomarcadores/análisis
2.
Chem Biodivers ; 20(2): e202200773, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36629332

RESUMEN

Bletilla striata (Thunb.) Reichb.f. is a perennial herb with abundant active ingredients. Previous research mainly focused on its tubers, however, the study on flowers, especially the variation of active ingredient contents at different flowering stages, was rarely seen. This study analyzed the total phenols, flavonoids, polysaccharides, anthocyanins, and cyanidin-3-O-glucoside content of B. striata flowers which were in cultivated in Herb Garden of Zhejiang A&F University and collected in May, 2019, in order to investigate the changes in active ingredients and antioxidant capacity among different flowering stages (bud, initial, and full bloom). Changes in radical scavenging capability of DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), ABTS (2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate)), and hydroxy were analyzed. Significant differences in active ingredient content of flowers were detected among different flowering stages. The total phenolic content increased continuously during the entire flowering stage. The contents of total flavonoid, total polysaccharide, and cyanidin-3-O-glucoside reached peaks at the initial blooming stage and then fell as the flowering process continued. The antioxidant activity in initial stage was the highest than in any other flowering stages. Therefore, we conclude that the initial blooming stage is the best harvesting stage of B. striata flowers. This study provides a robust basis for the harvest and utilization of B. striata flowers in food, medical, and cosmetic industries.


Asunto(s)
Antioxidantes , Orchidaceae , Humanos , Antioxidantes/química , Antocianinas/análisis , Flavonoides/química , Fenoles/química , Orchidaceae/química , Extractos Vegetales/química , Flores/química , Glucósidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA